گوگل مارکت

فروش فایل ,دانلود فایل,خرید فایل,دانلود رایگان فایل,دانلود رایگان

گوگل مارکت

فروش فایل ,دانلود فایل,خرید فایل,دانلود رایگان فایل,دانلود رایگان

پیش بینی تقاضای قطعات یدکی خودرو با استفاده از روشهای سری زمانی (آریما)


» :: پیش بینی تقاضای قطعات یدکی اتومبیل با استفاده از روشهای سری زمانی (آریما)
با توجه به ویژگی های تقاضای قطعات یدکی انگیزه مشکلاتی در پیش بینی این سنخ تقاضاها شده است.  تعدد زیاد قطعات یدکی خودرو ، رفتار تصادفی آنها در طول دوران و صفر بودن تقاضا در بسیاری از پریودها پیش بینی میزان استعمال را به یکی از بزرگترین چالش های پیش روی شرکتهای خودروسازی و تأمین کنندگان قطعات تبدیل کرده است.  
مدلهای پیش بینی سری زمانی:
چندین آیین متفاوت به سمت منظور مدلسازی سری های زمانی وجود دارند. مدلهای آماری شامل میانگین متحرک ، هموارسازی نمایی و آریما خطی می باشند که در آنهاپیش بینی مقادیر آینده به این سوژه محدود شده است که مقادیر آینده توابع خطی از مشاهدات پیش باشند. اینگونه روشها به سمت دلیل سادگی نسبی در فهم و به کارگیری ، در تحقیقات چند دهه اخیر بسیار مورد توجه بوده اند. برای استیلا بر محدودیت خطی بودن الگو و به حساب آوردن الگوهای غیرخطی مشخص در مسائل واقعی ، چندین نوع مختلف از مدل های غیر خطی در ادبیات موضوع پیشنهاد شده استکه از جمله مهمترین آنها می توان به اتورگرسیو شرطی (ARCH) ، دو خطی و اتورگرسیو آستانه ای (TAR) اشاره نمود. اگرچه مدلهای غیرخطی مذکور بهبودهایی در مسائل پیش بینی ایجاد نموده اند ، لیک به کار گیری آنها در حالت کلی محدود می باشد چراکه اینگونه مدلها تنها برای الگوهای غیرخطی خاصی طراحی شده اند و قادر به مدلسازی انواع دیگر سری های زمانی غیر خطی نمی باشند. اخیرا شبکه عصبی مصنوعی به عنوان یک جایگزین مناسب جانب مدلسازی سری های زمانی پیشنهاد شده اند. نقطه تاب اصلی شبکه های عصبی مصنوعی قابلیت مدلسازی غیرخطی انحراف پذیر آنهاست. در ادامه این نوشته به سمت تشریح اصول اساس فرآیند مدلسازی توسط مدل آرما و آریما پرداخته خواهد شد.


نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.